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A theory is developed for time-dependent coherent structures in a marginally stable 
atmospheric zonal flow. The coherent structures have the form of solitary waves 
travelling in the zonal direction. Analytical solutions are found for stationary solitary 
waves but these are shown to be always unstable. The instability manifests itself either 
as a fission of the structure subsequently emitting two oppositely directed travelling 
solitary waves or as an implosion in which the structure becomes increasingly more 
narrow and intense. Which of the two occurs depends sensitively on initial conditions. 
These solitary waves are stable in head-on collisions only if their joint zonally 
integrated amplitude is less than a critical value; otherwise, the implosion instability 
occurs. General initial conditions can give rise to solitary waves which either split, 
implode, or break down to form a train of nonlinear wave packets. A scenario for the 
birth and decay of isolated disturbances is given, utilizing the slow parametric transit 
of the marginal stability curve of the background zonal flow. 

1. Introduction 
Coherent atmospheric flow patterns, i.e., those which last longer than the 

characteristic synoptic timescale of several days, have been the focus of much recent 
theoretical attention. The most well-known of these coherent patterns is the 
atmospheric blocking situation. This is the occurrence of a dipolar structure of high- 
and low-pressure centres arranged with the high poleward of the low so as to split the 
westerly flow in which it is embedded. Oceanic examples analogous to atmospheric 
blocking are less well documented, but given the dynamic similarities of the two 
systems on the synoptic scale, there is ample reason to believe the phenomenon should 
be common to both systems. 

Theories for such coherent structures have been mainly developed along two lines. 
The first is the modon model (e.g. Haines & Marshall 1987 and references therein). 
The modon is a highly nonlinear, steady solution of the quasi-geostrophic equations 
on the /%plane in which nonlinearity balances the dispersive effect of B. In the analytical 
steady modon solution, the potential vorticity, q, is a linear function of the geostrophic 
stream function, $. The functional relationship differs though within and outside the 
dipolar zone of closed streamlines. That is, q($) is not a single-valued function. 

A second class of solutions has been developed by Malanotte-Rizzoli and co- 
workers (see for example, Haines & Malanotte-Rizzoli 1991 and references therein) 
and is the focus of this paper. This model is characterized by weakly nonlinear 
solutions of the quasi-geostrophic potential vorticity equation. In the steady state, for 
which the solutions are found, q($) is a single-valued function. These solutions are of 
the form of long, stationary, solitary waves embedded in the westerly flow and the 
relevant governing equation is found to be of the Korteweg-de Vries (KdV) type: 

A,,-KA+&4* = 0, (1.1) 
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which supports solutions localized in longitude A’, of the form 
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The parameters K and S are determined by the meridional structure of the 
undisturbed westerly current in which the stationary solitary wave is embedded. The 
meridional structure of the disturbance is determined by an associated eigenvalue 
problem (see below) and K and 6 depend fundamentally on certain details of the form 
of q($) and its derivatives. In particular, depending on 

and on aA/a$ for the undisturbed flow, the possible zonally isolated solutions can lead 
either to a blocking of the westerly flow (aA/a$ < 0) or a local acceleration of the flow, 
the so-called jet streak (aA/a$ > 0). There is some question whether the weakly 
nonlinear solutions are really adequate in the case of blocking since q($) may be 
indeterminable on closed streamlines, but Malanotte-Rizzoli has argued for the 
relevance of the solitary wave model in the initial stages of block formation. 

Both theoretical developments, i.e. the KdV theory as well as the modon theory, are 
fundamentally stationary solutions of the potential vorticity equation, for which 
reason the structure function q($) arises naturally as an exact integral. Although some 
effort has been made to discuss the temporal development of the coherent structures, 
this has been done for either deeply stable flow or flows which are considerably 
supercritical for ordinary baroclinic instability (Malguzzi & Malanotte-Rizzoli 1985). 

It occurred to us that it might be useful to re-examine the question of the time- 
dependent dynamics of these coherent structures in flows that are only marginally 
stable (or marginally unstable) in the belief that the atmospheric zonal flow is never 
really deeply stable (with regard to a standard instability criticality condition) and is 
held close to the marginal state by eddy fluxes of unstable waves. To this end we begin 
here with a re-examination of the KdV theory of Malanotte-Rizzoli in the context of 
the classical two-layer baroclinic model for those parameter values that render the 
zonal flow marginally critical. The precise sense of this marginality is developed below. 
We then consider localized coherent structures that can exist in these conditions and, 
in particular, we examine the evolutionary behaviour in time of the relevant solutions. 

We find that when the background flow is slightly subcritical with regard to 
baroclinic instability the stationary Kd V solutions are always unstable. We actually 
consider this a point in favour of the original theory for it yields a finite lifetime for the 
stationary solutions and demonstrates the slow dissolution of the coherent structure. 
Our theory also allows the background flow to evolve from an unstable to a stable state 
and this, in turn, allows the flow a natural method to grow certain ‘seed’ disturbances 
into full-fledged coherent structures which, if stationary, then eventually dissolve. 

In $2 we develop the asymptotic theory which leads to a time-dependent partial 
differential equation, in time and longitude (x) ,  for the amplitude of the coherent 
structure. The steady form of this equation recovers the form (1.1). Certain 
clarifications of the original development of the steady theory are naturally exposed in 
the time-dependent development. In particular, the necessity (see Malguzzi & 
Malanotte-Rizzoli 1985) of a small eigenvalue of the associated modal problem in y 
(latitude) is rendered more systematic. We develop the theory primarily for the case 
where the westerly flow is near-critical, but we also describe the governing equation 
when the flow is strongly stable. In the first case the governing PDE is second order in 
time while in the second, less interesting case, it is first order. In $ 3  we describe the 

A = a q / w ,  (1-3) 
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possible solutions of solitary wave type of the amplitude equation and where in 
parameter space they may be found. We find that the parameter space may be 
conveniently divided into four quadrants depending on the cross-stream scale and the 
super- or subcriticality of the flow. In only one of these quadrants can stable solitary 
wave solutions be found. The stationary KdV solutions in this quadrant represent the 
limiting solution of maximum amplitude. Slowly travelling solutions of smaller 
amplitude are also possible. In $4 we examine numerically the time-dependent 
behaviour of the analytical solutions. In particular, we find that the stationary KdV 
solution is always unstable. In some cases the instability manifests itself as a splitting 
of the original solitary wave followed by the slow propagation upstream and 
downstream of the resulting ‘pieces’. In other cases, the instability manifests itself as 
the explosive growth of a narrow, stationary peak, rendering invalid our asymptotic 
theory. A numerical treatment of the linear stability of the solitary waves is presented 
in $ 5.  We show that linear theory is an excellent predictor of the nonlinear development 
found in the preceding section. For each KdV solution, two instability modes are 
possible above a critical solitary wave amplitude. Each has the same growth rate and 
they differ only in the sign of their amplitude projection on the solitary wave. One sign 
leads to splitting, the other to explosive growth. Thus, within the asymptotic theory, 
the subsequent nonlinear evolution depends sensitively on the initial perturbation data. 

In $6 we describe numerical experiments involving either the overtaking of one 
solitary wave by a faster wave or the head-on collision of two solitary waves. 
Confounding our initial intuition we find that the solitary waves are stable in the 
former case and unstable in the latter case. In $7 we describe a few experiments with 
more general initial conditions which demonstrate the range of behaviour already 
qualitatively encountered by the pure solitary wave. In $8 we describe a few 
calculations in which the background flow is allowed to evolve from an unstable to a 
stable setting, demonstrating the growth to finite amplitude of small disturbance 
‘seeds’ and the subsequent production of solitary waves. In our final section, 9, we 
recapitulate our major results and describe the direction of future work. 

Although certain aspects of the time-dependent theory are grossly simplified with 
respect to the natural atmosphere, it is clear that a rich array of time-dependent 
dynamical phenomena associated with the coherent structures exists in addition to that 
of the possible steady solutions. The steady solutions, while of considerable potential 
significance meteorologically, are seen to be special cases of a more general evolutionary 
behaviour. Indeed, for weak subcriticality, the completely steady solutions are not even 
stable and therefore not realizable. This underscores the incomplete picture that special 
nonlinear steady solutions may represent. The coherence associated with such 
structures may, in fact, be fleeting and the real question then is primarily the timescale 
associated with the decline and dissolution of the coherent structure. 

2. The model 
We start with the two-layer version of the quasi-geostrophic potential vorticity 

equation on the ,&plane for flow within a zonal channel of width L. For simplicity we 
ignore dissipation, but it may easily be added if the dissipation of potential vorticity 
anomalies is proportional to the potential vorticity itself. 

In non-dimensional units the quasi-geostrophic potential vorticity equation is 
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where q, is the potential vorticity, related to the geostrophic stream function $, by 

The parameters F and p are 

(2.3 a, b)  

wheref,, g, Ap/p, D, and p*, are, respectively, the Coriolis parameter, the acceleration 
due to gravity, the density difference between the layers divided by the mean density, 
the rest thickness of each layer, and the dimensional ,&parameter. U is a characteristic 
scale of the background zonal flow which is used to scale the horizontal velocities and 
with L to yield a characteristic time, L / U ,  to scale t ,  while L scales x and y .  The 
Jacobian J(a, b) has its usual meaning, a,b,-a,bz. The index n refers to the layer; 
n = 1 is the upper layer, n = 2 is the lower layer. 

In terms of $n,  the horizontal velocities are 

un = - $ny, 0, = $nz* (2.4~1, b) 

The last term in (2.2) is a possible topographic contribution to the potential vorticity 
in the lower layer. 

Solitary waves which are confined in x and which are nearly stationary with regard 
to the Earth frame for zonal flows independent of x require rather special background 
states. We define the background zonal flow in that state as Uio)(y) with an 
accompanying potential vorticity Q:)( y ) .  We allow, however, a small but significant 
variation about this special state. The non-dimensional parameter measuring the 
departure is A such that the total background state in the absence of any flow anomaly 
is 

U ,  = U r ’ + A U f ’ ,  d 6 1, Q, = QF)+AQr,l). (2.5u, b) 

The basic field, which is purely zonal, satisfies a variant of (2.1) in which the non- 
linear terms vanish automatically, and small forcing and dissipation terms previously 
neglected must be considered, i.e., 

where gn is a dissipation of potential vorticity and F, is a potential vorticity forcing, 
possibly a function of time. We need not solve (2.6) since Q, and U, will be specified, 
but it is important to realize that conceptually (2.6) allows us to consistently choose 
Ui:’ and QP) to be slow functions of time, if desired, without affecting the fundamental 
mathematical development. 

The anomalies we will solve for will be neurly stationary in a frame moving with a 
velocity c,. This velocity will itself be determined as an eigenvalue of the fundamental 
eigenvalue problem described below. We place ourselves in the coordinate frame 
translating with velocity c, by rewriting (2.1) in terms of y ,  t and 

x= x-c , t ,  (2.7) 

while the total stream function and potential vorticity are each the sum of the basic 
state and the anomaly, i.e. 

4, = Q,<Y>+eqn, $n =-Jundy+e$n, (2.8a, b) 
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where E is a non-dimensional measure of the anomaly with respect to the background 
flow. 

We suppose that the anomaly is slowly evolving in time and has a long scale in x. 
That is, the timescale is long compared with L/ U and the x-scale is long compared with 
L. We make this manifest by looking for solutions for $,,, which are functions of 

(=ax  and T = y t ,  (2.9 a, h) 

where a and y are both small with respect to unity. Writing 

qn =pn+az$n&5, P n  $nyy+F(-1)"($1-$&- (2.10a, b) 

we rewrite (2.1) as 

/d(a/aT) ( P n  + a2$nct) + ( UAo) -c& a ( P n  + a2$n& 

+a$n&aQ(n)/aY+ d(aQ:)/aY))+aduC'(Pn + a 2 $ n g ) 5  

+ EaJ($,, P n  + a2$nt&) = 0, (2.11) 

where the Jacobian in (2.1 1) is with respect to the variables ( and y. The parameters 
y, a, E, and A are all assumed small with respect to unity, and some relative ordering 
between them is necessary. However, the relevant ordering is more easily understood 
as the analysis develops. For the moment, we need only assume that 

y 6 a, (2.12) 

which we may verify a posteriori. Then the lowest-order problem occurs at O(a). 
Writing each variable as, for example, 

$bn = $ f ' + U $ F ' +  ..., (2.13) 

where v = V(E, a, A ,  y )  is a small parameter, the problem for 4:) is 

(2.14) 

For disturbances which are localized, pg)  and $:) vanish at ( = f 00 so that (2.14) 
becomes 

where p:) = $giy + F( - 1)" ($?) - #)) and 

p',) - K n  $:) = 0, (2.15) 

K n  - e n , / <  (0) U(0) n - ~ 0 ) .  (2.16) 

In the case where c, = 0, K ,  is the baroclinic generalization of the function A 
described in the introduction. Note that (2.15) is an eigenvalue problem in y .  The 
boundary conditions are 

= 0, y = 0, l .  (2.17) 

In distinction to the eigenvalue problem described by Malguzzi & Malanotte-Rizzoli 
(1985), the x-wavenumber does not appear as the eigenvalue. Instead (2 .15)  consistently 
examines eigensolutions in the asymptotic limit of zero x-wavenumber and the 
question of whether the numerical eigenvalue discussed by Malguzzi & Malanotte- 
Rizzoli is small enough never arises. Instead, the proper eigenvalue for (2 .15)  is c,,, 
which is the phase speed of waves in the two-layer model in the limit of infinite zonal 
wavelength. For general Vn(y) ,  the eigenvalue problem must be solved numerically, 
but its general character can be inferred from the classical model of Phillips (1954). In 
general, for arbitrary Fand p, there will be two values of c,,, c r )  and cL2), that will allow 
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(2.15) to be satisfied for each cross-stream mode. In common with the previous work 
of Malanotte-Rizzoli and co-workers, we focus on the second cross-stream mode for 
which the anomaly will consist of a meridionally dipolar pattern. As in the Phillips 
model, we imagine each eigenvalue c, to be a function of /3 for the second cross-stream 
mode, namely 

We ask for that value of /3 for which the two values of c, coalesce such that 

c?) = c:"(p), cr) = CF'(p). 

CF'(p) = cl;"'(p) = c,. (2.18) 

That value of /3 for which the coalescence occurs determines the criticality condition for 
the mode under consideration. We will suppose that (2.15) has been solved for that 
value of /3 which satisfies (2.18). If at the same time c, should vanish, the conditions 
required by the steady theory of Malguzzi & Malanotte-Rizzoli would be met. This last 
condition can always be arranged by adding a uniform barotropic flow to the system, 
which is Galilean invariant, in order to arrest the wave. 

We can, in any case, always write the solution of (2.15) as 

$'," = A(5, T )  Hn(y),  (2.19) 

where Hn(y) is the eigensolution of (2.15) and A(( ,  T) is its unknown amplitude, which 
needs to be determined by the subsequent development of the asymptotic solution. 

In the case where the coalescence does not occur, and both cf) and cf) are real, a 
different asymptotic development occurs for which the mode is firmly stable. The 
equation in this less interesting and, we believe, less relevant case is developed in the 
Appendix. 

Assuming then that (2.15), (2.17), and (2.18) are satisfied, we can move to the next 
order. We will be able to verify after the fact that 

p >> (ad ,  a3, €a). 
Hence at next order, i.e. O(u), 

or 

(2.20) 

(2.21) 

Note that u in (2.13) is O(p/a). 

condition 
If (2.21) is multiplied by #:), integration by parts and use of (2.15) yields the 

(2.22) 

In the absence of critical layers, i.e. if U?) - c, does not vanish for any y, so that our 
expansion (2.15) is uniformly valid in y, then the condition of coalescence of roots, 
(2.18), guarantees the satisfaction of (2.22), as the example of the Phillips model shows. 
Indeed, (2.22) is the asymptotic limit of the Rayleigh condition for instability as the 
stability curve is approached parametrically. The satisfaction of the solvability 
condition (2.22) guarantees the existence of a solution of (2.21) in the form 

(2.23) 
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where the fi)( y) satisfy the inhomogeneous equations 

fldu -k (- 1)” m2) -A2)) - K,fl)  = - Kn *n 3 (2.24) 
UiO) - co 

p = 0, y = 0 , l .  
We suppose that (2.24) may be solved, for its particular structure will not concern 

At the next order, we obtain 
us. Note again that f’,”) will be non-singular as long as UAo) - c, + 0. 

which requires the following ordering between the parameters : 

p = U(a2) = U(E) = U(d).  (2.26) 

It is natural to think of A ,  the measure of the departure of the basic flow from its 
long-wave instability threshold, as being the external parameter of the problem. The 
relation (2.26) shows how the natural timescale, zonal lengthscale and amplitude of the 
anomaly are each chosen such that there is a balance between linear dispersion, 
nonlinearity, and temporal evolution. 

If (2.15), (2.19), (2.23), are used to evaluate the right-hand side of (2.25), and the 
same solvability condition is applied to (2.25) as was applied to (2.21), we obtain the 
governing amplitude equation for the anomaly, i.e. 

I mi A T T  4- (2.27) 

where we have provisionally chosen the exact ordering ,u = a2 = E = d. The coefficients 
mi are given by 

A ,  -I- m3 Ag 4- ‘)a = 0 I 3 

(2.28 a )  

(2.28 b) 
J O  n=l 

(2 .28d)  

The m, are generally just numbers whose magnitudes will not be of concern in this 
study. In fact, they could easily have been absorbed in the definitions of B ,  a, and p. 
However, their sign is of particular importance as will be demonstrated in the following 
section, so for the moment we prefer to represent the governing equation as (2.27). The 
coefficient m3 is of particular interest. Reference to (2.5a, b) and (2.6) shows that m3 
may be specified as a function of time and consequently could change sign as the system 
crosses from sub- to supercriticality. The bracket in (2.28c), whose projection on the 
square of the eigenfunction yields m3, may be interpreted to O(d) as 

(2.29) 
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0 

I' < 2F' 

Solitary wave (unstable) 

linear instability k' > !% 
m, 

0 
I' > 2FY 

No solitary wave 

linear instability k' c 5 
ma 

Solitary wave (unstable) 

linear instability all k 

Solitary wave (stable) 

linear stability 

That is, m3 is proportional to the small variation of K obtained by altering the basic 
flow from that structure which yields the root coalescence (2.18) and, with the proper 
barotropic flow added, the stationarity of the anomaly. In the theory of Malguzzi & 
Malanotte-Rizzoli, it would be m, that plays the role of the small wavenumber 
appearing as the eigenvalue of their basic problem. However, we have preferred to 
consistently insist on a zero eigenvalue of the fundamental problem (2.15) and instead 
produce the equivalent linear term in the equation for the anomaly by controlling the 
departure of K from its value at the coalescence point for c,. 

When the anomaly is entirely time-independent, (2.27) may be integrated twice in the 
zonal direction. For anomalies which vanish at k co this yields 

m m4 A2 
55 m, m2 2 

A + A A + - - = O ,  (2.30) 

which is exactly the equation obtained by Malguzzi & Malanotte-Rizzoli. Hence our 
time-dependent theory includes their steady solution as a special case. 

It is, in general, hard to anticipate the signs of the m,. The coefficient of the 
nonlinearity, m4, depends critically on a delicate derivative of K,  as described by Haines 
& Malanotte-Rizzoli. The sign of m4 will determine whether the anomly yields a split 
jet or a jet intensification. Although of obvious meteorological importance, the sign of 
m4 will play no role in the issues we shall discuss. The sign of m, can be estimated by 
evaluating the integral in ( 2 . 2 8 ~ )  in the case where U, and U, are constants. In that 
case, a little algebra shows 

1 P+F(U,-U,) 
4 (U, - c , ) ~  (c, - V,) 

m, = +- (2.31) 
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where 1 is the y-wavenumber of the cross-stream mode. For the dipolar solution I = 2 ~ .  
The eigenvalue c, is given by 

c,- u2 = (2.32) 

For l 2  > d 2 F ,  c,- U2 > 0 and m, is positive, while if 1' < d 2 F ,  m, is negative. 
Naturally, the value of m, will, in general, depend on the structure of the basic flow, 
but we take this simple example as an indication that m, can be both positive and 
negative depending on the meridional scale of the anomaly with respect to the 
deformation radius. The sign of m3, for the same example of uniform U,, will be 
identical to that of m, if the variation of the basic state is such as to render it unstable 
with respect to small plane wave disturbances. Since m2 is always positive, and m4 
affects only the sign of A, the time-dependent behaviour of the anomaly will depend 
on which of four sign combinations of rn, and m3 occur. In what follows, we will 
examine the behaviour of (2.27) and, in particular, determine in which quadrant, 
shown schematically in figure 1, stable, zonally limited anomalies are possible. 

After deriving (2.27), we discovered that an equation of the same form had already 
been derived by Deininger (1980) for the case in which the U, are exactly constant and 
QP) is produced by a small cross-stream topographic slope which is variable in y .  From 
the above derivation, however, it is clear that the structural form of (2.27) is of far more 
general interest. 

3. Solitary wave solutions 
Solutions of (2.27) of the solitary wave type 

A = A,sech2K([-uT) 

m4 A, = - 3m3 - 3m, u2, 

are possible as long as u, K and A, satisfy 

K2 =-A. m4 A 
m2 12 

(3 .1)  

( 3 . 2 ~ )  

(3.2b) 

Thus for a solitary wave solution to exist, m4 A, must be positive (3.2b).  It follows 
from ( 3 . 2 ~ )  that no solitary wave solution is possible in the quadrant m, > O,m, > 0 
of figure 1 .  If on the other hand, m, < 0 and m, > 0 (the second quadrant), only 
travelling solitary waves are possible for which 

In the third quadrant, m3 < O,m, < 0 solitary waves are again possible, and the 
amplitude required increases with the speed of propagation of the anomaly. Finally, in 
the fourth quadrant m3 < O,m, > 0 and solitary waves are also possible, but the 
amplitude decreases with propagation speed. For stationary solitary waves (within the 
frame moving with c,) m3 must be negative. This is the requirement first discovered by 
Malguzzi & Malanotte-Rizzoli. 

Although solitary solutions are possible in all quadrants except the first, we have 
found that violent instabilities destroy the solitary wave solution of quadrants 2 and 

u2 > m3/bi l*  

3 .  
To some extent this can be anticipated by a stability analysis of the linear part of 

(2.27). Ignoring the final, nonlinear term of (2.27), and searching for solutions of the 

1 (3 .3)  type A hr ei(Lz-al) 
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Tn 2 

0 kIz:1,A 25 50 75 100 I25 0 

f 
FIGURE 2. A numerical solution showing the explosive instability in quadrant 1, of an initial shape 
of the form of a solitary disturbance. The amplitude as a function of zonal position is shown at 
different times with the zero of amplitude offset so as to see the development with time of the spatial 
structure. 

we obtain w2 = ( K k  m2 2 - z ) k 2 .  (3.4) 

In the first three quadrants, as indicated in figure 1, there is always some range of 
wavenumber k which is linearly unstable. In all our numerical solutions, small noise 
present in the initial data rapidly swamped any other signal in all quadrants except 
quadrant 4 (see figure 2). Thus in the main, we shall focus our attention on the anomaly 
behaviour in quadrant 4. We emphasize that in this quadrant the background flow is 
slightly subcritical to small disturbances of the zonal flow. 

We note that in the fourth quadrant the stationary solution found by Malanotte- 
Rizzoli and co-workers, be it of split jet or jet stream type, represents a limit point of 
the solitary wave form. With I( = 0 the amplitude of the stationary solution reaches its 
maximum value, m, A, = 31m?(, and the solitary wave is at its most narrow, i.e. K has 
also achieved its maximum with the stationary solution. 

On the other hand, the maximum velocity of the solitary wave in the fourth quadrant 
occurs as A, goes to zero and is 

(4m*x = f (tm3l/m19. (3.5) 

This should be compared with the group speed of small plane waves on the background 
flow which may be deduced from (3.4), i.e. 
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which has ( u ) ~ ~  as its minimum value. Thus small, stable disturbances in this quadrant 
will always propagate faster than the solitary wave. This will allow irregular noise to 
pull away from the solitary anomaly leaving it isolated. 

It is important to note the fact that our evolution equation is second-order in time. 
The solitary wave can propagate eastward or westward. In terms of our original 
variables x and t ,  this speed is O(p/a) = O(a) = O(&. Thus truly stationary 
anomalies require first that co vanish and then the velocity u represents a very slow 
movement of the anomaly with respect to this frame (in which co vanishes). For a given 
solitary wave disturbance, the time taken for it to travel its own length, which we may 
take as the characteristic timescale for its disappearance, is O(d-'). Thus the closer the 
background state is to the critical curve, the longer the anomaly will remain in a given 
region. Of course, this estimate is based only on our scaling of x and t .  In addition, the 
detailed question of the anomaly's persistence would depend on u. For example, if 
u = 0, the anomaly's duration is, in principle, infinite. However, as we shall now see, 
this stationary anomaly is unstable. 

4. Behaviour of the solitary waves: numerical results 
We have integrated (2.27) numerically using the explicit pseudo-spectral method of 

Fornberg & Whitman (1978) in which the spatial derivatives are evaluated using fast 
Fourier transforms. Time-stepping is done with a centred difference operator. The 
domain is periodic, but is made large enough so that the region of interest is essentially 
isolated. The numerical scheme was checked to ensure that mass (see below) was 
conserved (to 0.01 % or better) in individual runs and that stable solitary waves 
propagated with a speed given by the theory (3.2a). The initial conditions for most runs 
were the analytical solitary wave with the addition of very small random perturbations. 

Before describing our results, we first describe one global conservation principle we 
have succeeded in finding. A second conservation principle will be discussed below. If 
(2.27) is integrated over the finite-6 interval, we obtain 

Ad5 = 0, (4.1) 

assuming the disturbance vanishes at 6 = & a. 
Hence the mass of the anomaly can, at most, grow linearly with time. However, it 

is not difficult to show, by returning to the original layer equations, that the linear 
growth is a spurious solution in the present asymptotic limit. This is connected with the 
requirement that the zonally averaged qn in each layer be conserved for small- 
amplitude, zonally limited disturbances. In all our calculations BA(O)/BT = 0, initially, 
so then the mass will be conserved directly from (4.1). 

In fact, we have taken the conservation of 

m = A dc = constant, 

to be one of our chief diagnostics for the accuracy of our numerical integration. For 
the solitary wave solution, we find 

Figure 3 shows the numerical solution corresponding to an initial condition of a 
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solitary wave of amplitude A ,  = 2. For these calculations, all done in quadrant 4, 
(m,  > O,m, < 0) ,  we have chosen 

so that (2.27) can be put into the canonical form 

which is equivalent to setting 

in (2.27). 

E = - d(m,/m4),  a = ( - d(m,/m,))t, ,u = - drn3/m, m,, 

A , ,  - '4, + A ,  + W2)& = 0, 

( m , , m 2 , m 3 , m 4 )  = (1, 1, I), 

In this form (3.2) becomes 

(4.4) 

U2 = 1 -fA,, Kz = &Ao. (4.5a, b) 

We see in figure 3 the propagation, without change of shape, of the solitary wave as 
Hence = 3. 

predicted by the analytical solution. 
On the other hand, if we start with the stationary solution for which u = 0 and 

A ,  = 3 and small random noise (the steady solution of the theory of Malguzzi & 
Malanotte-Rizzoli or Haines & Malanotte-Rizzoli for either the split jet or jet streak 
cases), we observe the unstable behaviour shown in figures 4(a) and 4(b). Either the 
solution splits apart yielding two solitary waves of lower amplitude, one travelling 
eastward and one travelling westward, as in figure 4(a), or equally likely, the instability 
manifests itself as the explosive growth of a stationary but narrowing peak, i.e. an 
implosion. In the latter case the narrowing is sufficient to compensate for the growth 
in amplitude so as to preserve the total mass (4.3). In the latter case, of course, 
eventually the resulting large amplitude and shortened zonal scale of the disturbance 
places the anomaly beyond the validity of the asymptotic theory. It is important to 
recall that this is an instability of the solitary wave. The background flow is definitely 
subcritical (m, < 0). 
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The instability is not limited to the stationary solution. Figure 5 shows the splitting 
instability for the slowly travelling solitary wave with A, = 2.9. No perturbations, 
other than numerical roundoff error, were introduced. In this case the solitary wave, 
which was originally travelling to the right, splits asymmetrically into two smaller- 
amplitude solitary disturbances. The larger, narrower disturbance moves in the 
original direction of propagation while a broader, lower-amplitude disturbance moves 
upstream. This instability is observed for A, > 2.3. Figure 6 shows a summary of our 
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FIGURE 5. The fission instability of the rightward travelling solitary wave with A ,  = 2.9. 

0 1 2 3 

A,  
FIGURE 6. The solitary wave stability diagram in which the larger amplitude produced by fission is 
plotted against the initial amplitude. The circles show the numerical results and the dashed line is 
from the conservation laws (4.10) and (4.13). 

calculations. On the abscissa, we place the amplitude of the initial solitary wave, and 
on the ordinate, the amplitude of the larger of the two waves formed by the splitting 
instability. At A, - 2.3, the larger amplitude of the emitted waves essentially matches 
the initial amplitude, and below this threshold the solitary wave is stable. 

This initial amplitude and the amplitudes of the scattered solitary waves can be 
determined from a conservation law derived from (4.4). In a frame of reference moving 
at velocity u,, we take 

= [-u, T, 7 = T, 
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and (4.4) then becomes 

If (4.6) is multiplied by (5, then integrated over the infinite C interval we obtain 
A, - 2u0 A, + (u; - 1) A g +  Acgc+KA2)gc = 0. (4.6) 

a2 - a -  -[A+2u0-A = 0 
a72 a7 (4.7) 

assuming that the disturbance vanishes at 6 = & a. The overbar signifies integration 
in [from -a to +a. 

As discussed earlier the mass (A) is conserved for initial conditions in which 
a,4(o)/a7 = 0. Thus (4.7) gives 

(4.8) 

grows linearly with time. For the solitary wave solution to (4.4) given 

a -  
-[A = constant. a7 

The moment 
by (3.1) and (4.5a, b) of amplitude A, and speed u,, (4.8) can be evaluated to give 

[A, sech2 K&- (u, - u,) 7 )  d[ 

= (U,-U0)443A\. 
Integrating in 7 gives - 

[A = (u, - u,) 4 4 3  A! 7.  (4.9) 
Note that if u, = u , , p  = 0. 

Guided by the numerical results (e.g. figure 5),  we assume that the initial solitary 
wave of amplitude A, and speed u, splits into two solitary waves, A, which moves in 
the original direction of A, and A, which moves in the opposite direction. Conservation 
of mass gives 

A! = Af+Ai .  (4.10) 

Using the moment conservation law (4.9) with u, = u, gives 

(u, - u,) A t  + (u, - u,) A\ = 0. 

Mass conservation (4.10) can be used in (4.1 1) to obtain 

(4.1 1) 

U, A! = U, A! + u2 At. (4.12) 

Equation (4 .5~)  is then used to eliminate u, in favour of A, and, recalling that 
uo,ul > 0 and u, < 0, we find 

(I-;A,):A~ = ( i - ) ~ , ) ~ ~ i - ( i - g ~ , ) t ~ t .  (4.13) 

Thus if A, is given, A, and A, can be determined from (4.10) and (4.13). 
Near the critical point for splitting, A, +Ao and A, +. 0. Taking 

(4.10) gives 

A, = A,--d; d < 1, 

A* 

4A0 
A, = -+ o(d3). 

(4.14) 

(4.15) 

This result shows right away the asymmetry of the two scattered waves. Now using 
(4.14) and (4.15) in (4.13) and dropping terms of 0(A2) or higher, we find that 

which gives the critical amplitude A,, = 2.25. This agrees very well with the numerically 
determine value of A,, x 2.3 shown in figure 6. 
Also shown in figure 6 by the dashed line is the solution to the conservation 

$A;-A,=O, 
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FIGURE 7(a,b).  For caption see facing page. 

conditions (4.10) and (4.1 3) for A, given the initial wave amplitude A,. The agreement 
between the theory and the numerical results is excellent. 

It follows that only slowly propagating solitary waves are stable. In particular, the 
stationary solution previously suggested as a candidate for long-lived coherent 
anomalies in atmospheric flows is, in fact, unstable and fleeting. As previously noted, 
however, the timescale for the splitting and subsequent departure of the pieces depends 
critically on the closeness of the flow to the critical curve of the background state. 
Hence, the breakdown of the steady solution can be very slow. We consider this an 
unexpected advantageous quality of the theory for it suggests a finite lifetime for the 
coherent anomalies independent of dissipative processes, depending instead on the 
ideal fluid dynamics which produce the anomaly. 

5. Linear instability of the solitary wave solution 
To understand and quantify the observed breakdown of the nonlinear solitary wave 

solutions, we have examined the linear stability of the solution (3.1) to small 
disturbances. Writing 

A = A,+a,  (5.1) 
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where A, is the solitary wave solution and a((, T )  is a superposed small-amplitude 
disturbance, we obtain the governing equation for a(& T) by putting (5.1) into (4.4). 
Keeping only linear terms, we obtain 

We have integrated (5.2) subject to the initial condition 

N 

a(& 0) = E a!$) cos (ki 6 + g5i), k, = iAk, (5.3) 
i-1 

where ahi) and g5* are the random amplitude and phase of the disturbance. Here 
Ak = 2 x / L f  and L, is the size of the numerical domain. The number of waves N 
included in (5.3) was chosen such that k N  5 1.2. We chose aT(&O) = 0. The solution 

14 FLM 251 
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FIGURE 8. The linear stability diagram showing growth rate versus solitary wave amplitude. The 

circles are from the numerical calculations and the solid line is a linear fit to the results. 

is calculated numerically using the same method as for the full nonlinear equation. The 
quantity 

(5.4) 

is evaluated until cr becomes independent of time, i.e. r ~ - + c r ~ .  This yields the fastest 
growing mode of instability of the form 

where h = :a,. 
It follows from the invariance of (5.2) under the transformation a+-a, that for 

every normal mode with growth rate A, a second mode exists with the same h for which 
a -t -a. Figure 7 (a, b) shows the rise out of the initial random field of each of these 
disturbances, and figure 7(c )  shows the stabilization of v as a function of time for the 
run in figure 7(a). In figure 7 ( d ) ,  we superimpose the unstable normal mode on the 
initial solitary wave, here stationary for A, = 3. The linear mode as shown in figure 
7 ( d )  would tend to yield a depression, i.e. a nascent splitting in the original solitary 
wave. If instead the normal mode has the opposite sign, it would tend to enhance the 
magnitude of the peak value of the solitary wave. Indeed, if each calculation is carried 
into finite amplitude, the results shown in Figure 4(a, b) are obtained. That is, the 
occurrence of splitting or explosion of the unstable solitary wave depends on the sign 
of the instability mode which is excited. In particular, we have found empirically that 
the appropriate measure of the sign of the instability mode is determined by 

a = g((-uT)eAT, (5 .5)  

that is, the initial projection of the perturbation on A,. We have found that S > 0 (a 
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FIGURE 9. The temporal nonlinear behaviour of the maximum amplitude for a solitary wave with 

A, = 3. 

linear positive mode) leads to a nonlinear explosive behaviour while S < 0 results in 
nonlinear splitting. Since S depends on details of the initial noise distribution, the 
finite-amplitude evolution of the solitary wave, when unstable, is extremely sensitive to 
initial data. Of course, in the case of S > 0, when explosive growth occurs, our 
asymptotic theory is unable to characterize the long-term behaviour of the unstable 
system. 

As the amplitude of the perturbed solitary wave is reduced, the growth rate is also 
reduced. Figure 8 shows the result of our calculation of the growth rate. It appears that 
A is a linear function of A, above a critical value A,, - 2.24 such that 

This critical amplitude agrees very well with A,, = 2.25 derived in the previous section 
from the conservation laws. The coincidence of the linear instability threshold and the 
finite-amplitude results summarized in figure 6 suggests that the linear instability 
develops spontaneously from the background noise, and the instability, rather than 
being equilibrated by nonlinear effects, is enhanced, leading to splitting or explosion. 
Figure 9 shows the behaviour in time of the peak amplitude for the case A, = 3. After 
a period of initial exponential growth, a nonlinear catastrophic growth occurs, well 
modelled by the equation 

h = 0.572(A0-A0,). (5.7) 

A 
= A - + N  - , N > O ,  

d A  &(x) A, (A”,)” 
leading to the destruction of the initial solitary wave. 

6. The collision of two solitary waves 
As we have noted, completely stationary solitary waves are unstable and, depending 

on the initial data, may split and evolve into two travelling solitary waves. Hence if 
more than one initial anomaly is initially present on a latitude circle, it is likely that the 

14-2 
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FIGURE 10. The explosive instability which occurs for initial lumps of solitary wave form whose 

amplitude exceeds 3. 

fragments left by each anomaly will move relative to each other and collide. We 
describe in this section a set of numerical experiments dealing with the collision of 
solitary waves. 

Before examining these experiments, it is useful to ask the following question. 
Suppose we start at T = 0 with a disturbance of the form 

A = A ,  sech2 Ax, dAldT = 0, T = 0, (6.1) 

but where A ,  > 3 so that no solitary wave solution is consistent with (4.5a, 6). Figure 
10 shows the result of such a trial with A ,  = 3.5, and it is entirely typical of situations 
where solitary wave shapes have a mass greater than the mass of a solitary wave of 
amplitude A ,  = 3. That is, if 

(6.2) 

an explosive instability occurs. 
The collisions we investigate are of two types : either slow, overtaking collisions or 

relatively fast head-on collisions. It is important to recall that the fundamental 
eigenvalue problem sets a definite speed for the frame in which (4.4) applies. Hence, 
there is a distinguishable difference between overtaking and colliding events that 
cannot be trivially eliminated by a Galilean transformation. 

Our initial expectation was that the former, in which the time of interaction of the 
two pulses is longer, would be more dangerous to fragmentation. This turns out not 
to be the case. 

Figure 11 shows a thoroughly typical example of a smaller ( A ,  = l), wider solitary 
wave overtaking a larger ( A ,  = 2), narrower more slowly moving solitary wave. 
Initially well separated, they begin to merge at T - 240, briefly coalesce, and then with 
an exchange of identities or a tunnelling of one through the other, the faster, smaller, 

rn > m,(A, = 3) = 12, 
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FIGURE 1 1 .  The stable overtaking interaction of two solitary waves; A,  = 1, A ,  = 2. 

solitary wave emerges at T - 320, and two disturbances with the same shape as the 
initial pair smoothly separate. The interaction is entirely stable, but does result in a 
phase shift of each wave. 

The situation is quite different for head-on collisions. In figure 12(a), we show the 
symmetrical collision of two solitary waves, each of amplitude unity, in a head-on 
collision. After coalescing at T - 25, the resulting single, stationary hump begins an 
explosive growth similar to the instability of figure 10. 

The mass in each solitary wave is 

rn = (48A,)i, (6.3) 

which is 6.93 for A ,  = 1. Since mass is conserved during the collision, the mass of the 
coalesced lump is 13.86 and, therefore, exceeds the mass of the limiting solitary wave 
of amplitude 3 which has rn = 12. Even for collisions that are not symmetric, we have 
found that the criterion that total mass not exceed 12 for stability is fairly well obeyed. 
Figure 12(b) shows the asymmetric collision of two waves of amplitudes 1 and 2, 
respectively, and again, the explosive instability occurs. 

On the other hand, head-on collisions of solitary waves whose summed masses are 
less than 12 seem to be stable, as the example of figure 12(c) shows in which 
A ,  = A ,  = 0.5, so that m(A,)+m(A,)  = 9.798 < 12. The two solitary waves pass 
through each other with no change of shape in a stable interaction similar to the 
overtaking condition. 

Consider now two waves of amplitude A ,  and A ,  which coalesce to form a lump 
which we approximate as, instantaneously, a single solitary wave of amplitude A,. 
Then conservation of mass implies 

At + A\ = Af,  

or A ,  = A,+A,-2(A,A3)~. (6.5) 

(6.4) 
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FIGURE 12. (a) The explosive instability of two equal solitary waves ( A ,  = A,  = l.O), suffering a head- 
on collision. (b) As in (a) except the initial condition is not symmetric ( A ,  = 1,A, = 2). (c) Stable 
head-on collision of smaller-amplitude waves ( A ,  = A ,  = 0.5). ( d )  The stability diagram described in 
the text. The numerical results are indicated by circles for stable interaction and triangles for explosive 
instability. 

If we provisionally assert that the critical lump size for instability is A ,  = 3 then the 
threshold of instability of two colliding solitary waves would be given by 

A ,  = A, -2 (3A1) i+3 ,  (6.6) 

and this threshold curve is shown in figure 12(d) along with the results of numerical 
runs. We have found that (6.6) predicts fairly well the boundary between unstable and 
stable interactions between colliding solitary waves. There is some departure from the 
criterion (6.6) when one of the solitary waves has a very small initial amplitude, for 
then the resulting instability requires a long time to develop. 
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FIGURE 13. The spontaneous breakdown into two wave packets of an initial solitary wave of 
‘wrong’ sign. 

In general then, should fragments of previous solitary waves which have fissioned 
collide, the fragments, if large enough, could produce a locally large-amplitude 
instability. It will take further analysis beyond the scope of the present study to 
discover the final state achieved after the explosive instability carries the motion field 
beyond the region of validity of our asymptotic analysis. 

7. General initial conditions 
If the initial disturbance is not of solitary wave form, basically three resulting 

scenarios of behaviour have been found. In the first case, the initial disturbance can 
simply scatter and degenerate into a nonlinear wave packet. Figure 13 shows the 
evolution in time of an initial condition that is in every way consistent with the analytic 
nonlinear solitary wave except that its amplitude is negative (m, A, < 0) when it should 
be positive. The disturbance quickly breaks down and disperses as two wave packets. 

If the amplitude is positive (m, A, > 0), but the shape is not that of solitary wave, our 
calculations have shown that the initial lump of the form, for example, 

A = A , ~ - ( w *  (7.1) 
can either fission into two solitary waves as in figure 14(a) or, at the same value of A 
but higher amplitude, succumb to the explosive instability as shown in figure 14(b). For 
the Gaussian initial distribution (7.1), we have found an empirical threshold between 
splitting and explosive instability in which (figure 15a) the critical transition to 
explosive behaviour, rather than splitting, is essentially linear in A. That is, narrow 
initial pulses must have larger amplitude to achieve explosive amplitude growth. This 
is not, however, simply a question of total mass as in the case of solitary wave 
interactions. As figure 15 (b) shows, the threshold mass for explosive instability 
depends on the shape parameter, i.e. the criterion distinguishing explosive from 
splitting instability is not based only on initial mass but is also shape-depednent. 

In fact, if the initial data have essentially no mass, a rather interesting evolution can 
occur. Figure 16 shows the evolution of an initial condition consisting of a plane wave 
packet, i.e. 

A = adsink,& (7.2) 
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FIGURE 14. The evolution of an initially Gaussian lump to either (a) separating solitary waves, or 
(b) the narrowing of the lump and the catastrophic growth of the amplitude. 

but ‘windowed’ such that A vanishes for large 6. For example, in figure 16, the 
wavelength of the plane wave is 19, and it is windowed in a &interval of O(100). The 
initial packet splits and each piece propagates to large 161. As described above, the 
linear plane waves always move faster than the solitary waves. What is evident in figure 
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FIGURE 16. (a) The evolution in time of a nonlinear wave packet into two wave trains followed by an 
evolving sequence of solitary waves. (b)  For t > 150, we show only the left-hand moving disturbance. 

16 is the development in the lee of each plane wave pulse of a series of slower solitary 
waves being left behind by the dispersing plane wave disturbances. This is a 
particularly significant result because it indicates that it is not necessary to start with 
shapes close to an isolated disturbance to achieve an anomaly. A solitary wave can 
evolve as the end state of a more general initial disturbance distribution. 
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After initial growth of the seed the lump splits into two solitary waves. 

stable. 

8. Transition events : development of solitary solutions 
We have seen how already-formed finite-amplitude disturbances will further evolve 

under the influence of dispersion and nonlinearity in that part of parameter space 
(quadrant 4 of figure 1) in which the background flow is slightly subcritical. We 
describe here a possible scenario by which such finite-amplitude disturbances may be 
formed. To do so, we take advantage of the previously noted fact that m3 can be 
considered a function of T. We imagine that initially our background state is slightly 
supercritical so that, for m, > 0, we have m3 > 0. Then as time goes on, we allow the 
background flow to stabilize by specifying that m3(T) passes through zero and becomes 
negative. In particular, we suppose that 

m, = m, = m4 = 1, (8.1) 

while 
(1 -0.2T; T < 10, 

""1 -1; T >  10, 

with an initial condition consisting of a small disturbance 

A = A,,sech2hx, (8 * 3) 

where A, = 0.5; h = 0.204. Although we are specifying a temporal change in the 
background stability, it is perhaps more relevant (although more complex) to think of 
the disturbance as transiting from a region in of background instability to one of 
stability. However, in strict accordance with the development of our amplitude 
equation, we must formally consider this to occur instead in time. 

Figure 17 shows the development of an isolated initial perturbation when m3 is given 
by (8.2). For as long as the background flow is unstable, the disturbance grows 
exponentially in place. Even though m3 is a function of time, and the background flow 
is unstable, the disturbance mass is still conserved. This requires, as shown in the figure, 
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FIGURE 18. As in figure 17 except the initial disturbance is not of solitary wave shape. 

the disturbance to narrow as it grows. After T = 5 ,  the background flow becomes 
stable and the flow parameter m3 makes the transition from the first to the fourth 
quadrant of figure 1. The value of m3 is then held fixed for T > 10 at the subcritical 
value, mg = - 1. The disturbance is seen to fission, forming two large lumps plus 
preceding nonlinear wave trains. Each lump, with amplitude A,, - 0.65 moves with a 
speed u = 0.88, in excellent agreement with the solitary wave solution (4.5a). We thus 
suggest that small-disturbance seeds can grow to finite amplitude in an unstable 
regime, and if the evolved shape is appropriate, metamorphose into solitary waves 
should the background flow become stable or should the disturbance enter a zone of 
stable background flow. The initial seed need not be of solitary wave shape. Figure 18 
shows the emergence, after fission, of four solitary waves, two in each direction, from 
an initial distribution consisting essentially of a plateau in 6. 

9. Discussion 
We have taken the original steady-state theory of Malguzzi & Malanotte-Rizzoli 

(1989, and embedded it in a time-dependent theory for a marginally stable atmosphere 
(or ocean). In our development, the fundamental eigenvalue problem, (2.15), for the 
meridional structure has as its eigenvalue the O(1) zonal translation speed, coy of the 
finite-amplitude anomaly. In general, the eigenvalue problem yields two values of c,, 
and we have chosen to work in that part of the parameter space where a coalescence 
of the eigenvalues occurs as a manifestation of the marginal stability of the basic zonal 
flow in which the anomaly develops. Both nonlinear effects and departures of the zonal 
flow structure from the precise marginal state lead to a slow drift with velocity u with 
respect to the frame moving with c,. Thus for the solitary wave, we have as a complete 
representation in x and t : 

where K is O( l), but where ,LA and a are small and ,LA = O(a2). Since a Q 1 , it follows that, 
for stationary anomalies, the first requirement is that the parameters of the basic flow 
problem are such that c, = 0. This, in principle, can always be obtained after 
coalescence by the imposition of a uniform barotropic flow on the system. This 

$n  = A ,  Sech2 a K [ X -  t(c, +(,LA/a) u)] H,(Y), (9.1) 
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FIGURE 19. The collision of an otherwise stable solitary wave (A, = 2) with a nonlinear wave train. 
The amplitude of the crests in the wave train are large enough to induce the explosive instability of 
the solitary wave. 

criterion is identical to that of Malguzzi & Malanotte-Rizzoli, and our development is 
consistent with theirs to that extent. However, to have a completely stationary 
solution, u must also be zero, else a slow drift of the anomaly will occur. For u = 0 a 
particular condition (3.2) must hold between the amplitude A, and the width K of the 
solitary wave again in agreement with the original steady theory. We emphasize again 
that our development also contains Haines & Malanotte-Rizzoli’s description of jet 
streaks in addition to split jet anomalies. 

The solitary wave itself can only be found in that portion of parameter space in 
which the background zonal flow is stable (although in our case, only marginally so). 
However, the stationary solution, previously proposed as a permanent coherent 
structure, is unstable even with the conditions of background flow subcriticality. Our 
calculations show that the solitary wave either fissions and emits slowly moving 
solitary waves both eastward and westward or contracts and implodes developing a 
narrowness and amplitude finally inconsistent with our asymptotic theory. Which of 
the two occurs depends sensitively on the sign of the ambient background disturbances. 
Hence the mode of self-destruction of the anomaly sensitively depends on initial data. 
We think, first of all, that the natural slow decay of the stationary anomaly is an 
attractive feature of the theory giving a long but finite lifetime to nonlinear anomalies 
in atmospheric currents. Our asymptotic theory is adequate to describe the fission 
process. The implosion and strong peaking scenario confronts us with a process that 
we are unable to legitimately follow beyond a certain point. We plan in the future to 
return to the full quasi-geostrophic potential vorticity equation to see how the 
explosive amplitude growth and the catastrophic thinning of the anomaly are halted. 

The solitary waves below a certain critical amplitude (see figure 6) are stable to small 
disturbances. They are robust, however, only when undergoing certain restricted 
interactions. In particular, head-on collisions of solitary waves will again lead to 
further instabilities if the instantaneous summed mass of the disturbances, e.g. the area 
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1, d2f 1% 2F I' 
FIGURE 20. A curve showing the non-dimensional critical p us. I for the Phillips two-layer model as 
k4 + 0. The figure shows a case in which the second cross-stream eigenmode will be more dangerous 
than the first. 

under the A(x)  curve, exceeds a critical value. Thus the coherent structures are easily 
disposed of if they are disturbed in such a way that the peak amplitude of the solitary 
wave plus that of the disturbance even momentarily resembles a solitary lump whose 
amplitude exceeds a critical value. Figure 19, for example, shows an otherwise stable 
solitary wave being struck head-on by a nonlinear wave packet. Although the wave 
packet has essentially no net mass, the sum of the solitary wave and one of the wave 
crests in the packet is enough to send the solitary wave into irreversible explosive 
growth. 

As in the previous steady-state theories, it would appear fortuitous that the second 
meridional eigenfunction should be more important than the first. We focus attention 
on the second cross-stream mode because its dipolar structure is suggested by the 
observed dipolar blocking patterns in the atmosphere. It might well be asked how we 
can focus on the second cross-stream mode and require it to be marginally critical and 
ignore the gravest mode. Surely, were the gravest mode frankly unstable, this would 
argue against the relevance of the second mode. Figure 20 shows a schematic of the 
marginal curve for the two-layer model yielding the critical /3 for stability as a function 
of cross-stream wave number for the case where the horizontal shear is negligible. Since 
1 is quantized, only a few 1 values are possible within the unstable range l 2  < 2F. In the 
example shown, the gravest mode has 1 = 1, on the long-wave side (1, < 4 2 F )  with 
p(1,) c p(B(r,) where I ,  is the second cross-stream wavenumber here shown on the short- 
wave side (i.e. in the right-hand part of figure 1). Hence in this case the second mode 
would, in fact, be the more 'dangerous'. 

The time-dependent theory has established a larger dynamical setting in which to 
consider coherent anomalies in atmospheric flow patterns. It emphasizes the richer 
dynamics the anomalies can experience and underscores the transient and surprisingly 
fragile character of the previously examined steady solutions when the background 
flow, while near its ordinary criticality condition for instability, is definitely stable. It 
will be of considerable interest to numerically and analytically extend these results by 
removing the asymptotic requirements of the present analysis. Such work is in 
progress. 
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Appendix 
If the parameters of the background flow are such that the coalescence of roots (2.18) 

does not take place, this implies that the background flow is distant from the marginal 
curve. If the flow is strongly supercritical, we cannot expect disturbances of fixed shape 
to dominate the solution. Thus in the non-coalescing regime, we are describing firmly 
subcritical, stable flows. When coalescence does not occur, (2.22) will not be satisfied 
for non-trivial disturbances. In such a case, rather than (2.20) we must choose the 
equality 

p = O(ad,a3 ,m) .  (A 1) 

Proceeding as in $2, the solvability condition then yields for A the governing 
equation 

where rn2, m, and rn4 are given as in (2.28) and 

Solitary wave solutions of (A 2) of form 

A = Aosech2K(t-uuT) 

are possible if 

as in (3.2b), while the solitary wave moves in only a single direction with respect to a 
frame moving with speed co (which may be either c r )  or cf)) at the rate 

If m3 < 0 as in the stable examples of $3, and if the potential vorticity gradient is 
positive in each layer (rendering the background flow stable), then n, will be positive, 
as will be - rn3/nl .  Then completely stationary solutions are possible when 

(A 5 )  

which is the criterion of Malguzzi & Malanotte-Rizzoli. Given the classical KdV nature 
of (A 2), we conclude that in this case of firmly subcritical background flow, the 
stationary solitary wave will be stable. 

rn4 A, = 3m3, 
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